If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-18=15x
We move all terms to the left:
12x^2-18-(15x)=0
a = 12; b = -15; c = -18;
Δ = b2-4ac
Δ = -152-4·12·(-18)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-33}{2*12}=\frac{-18}{24} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+33}{2*12}=\frac{48}{24} =2 $
| 9-5x^2=-3x | | 4k-2k=-10 | | x2+3x+48 =0 | | 9/4y−12=4/1y−4 | | -20=7g-6 | | -4+3x=5x+14 | | 2p+4+3p+2p-13=180 | | p−7=5.9 | | 16b+4b+2b-21b=12 | | 65+4x=150 | | 2-5(8-2g)+g=3g-8 | | 2x²+6=14 | | 15y=7(2y+24) | | 3x+3+2=2x+5+x | | 2b+4=5b-4 | | 4/k=611 | | u+2u+u-u-2u=17 | | 3x-4=-2+7 | | 5x+79=7x-7 | | 15y=7(2y=24) | | 4x3+-10x2+50=0 | | 980x^2-19.6-784=0 | | u+2u+u-u-2u=-7 | | -2x-10=7x+80 | | 3x+5=-2+7+4x | | 4x-99=180 | | 6x+16-5x=-4-11 | | 50-8y=-2y-4 | | 4x3+-10x2+-50x=0 | | 3x-14=10x-28 | | 2x-5+3x=-50 | | 4(5-7)=6-12x |